首页> 外文OA文献 >A simple bijection between standard (n,n,n) tableaux and irreducible webs for sl_3
【2h】

A simple bijection between standard (n,n,n) tableaux and irreducible webs for sl_3

机译:标准(n,n,n)表格和不可缩减之间的简单双射   sl_3的网

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Combinatorial spiders are a model for the invariant space of the tensorproduct of representations. The basic objects, webs, are certain directedplanar graphs with boundary; algebraic operations on representations correspondto graph-theoretic operations on webs. Kuperberg developed spiders for rank 2Lie algebras and sl_2. Building on a result of Kuperberg's, Khovanov-Kuperbergfound a recursive algorithm giving a bijection between standard Young tableauxof shape (n,n,n) and irreducible webs for sl_3 whose boundary vertices are allsources. In this paper, we give a simple and explicit map from standard Youngtableaux of shape (n,n,n) to irreducible webs for sl_3 whose boundary verticesare all sources, and show that it is the same as Khovanov-Kuperberg's map. Ourconstruction generalizes to some webs with both sources and sinks on theboundary. Moreover, it allows us to extend the correspondence between webs andtableaux in two ways. First, we provide a short, geometric proof ofPetersen-Pylyavskyy-Rhoades's recent result that rotation of webs correspondsto jeu-de-taquin promotion on (n,n,n) tableaux. Second, we define anothernatural operation on tableaux called a shuffle, and show that it corresponds tothe join of two webs. Our main tool is an intermediary object between tableauxand webs that we call an m-diagram. The construction of m-diagrams, like manyof our results, applies to shapes of tableaux other than (n,n,n).
机译:组合蜘蛛是表示张量积不变空间的模型。基本对象网是带有边界的某些有向平面图。表示上的代数运算对应于Web上的图论运算。库珀伯格为2Lie代数和sl_2开发了蜘蛛。基于Kuperberg的结果,Khovanov-Kuperberg找到了一种递归算法,该算法给出了标准Young tableauxof形状(n,n,n)与sl_3的不可约网络之间的二分对,其边界顶点是所有源。在本文中,我们给出了一个简单明了的图,从形状为(n,n,n)的标准Youngtableaux到sl_3的不可约网的边界顶点全部为源,并表明它与Khovanov-Kuperberg的图相同。我们的构造可以推广到某些在边界上既有源又有汇的网络。而且,它允许我们以两种方式扩展Web和tableaux之间的对应关系。首先,我们提供了一个简短的几何证明,证明了Petersen-Pylyavskyy-Rhoades最近的结果,即网的旋转对应于(n,n,n)画面上的jeu-de-taquin提升。其次,我们在tableaux上定义了另一个自然操作,即shuffle,并表明它对应于两个网的连接。我们的主要工具是tableaux和web之间的中间对象,我们称其为m形图。像我们的许多结果一样,m形图的构造适用于除(n,n,n)以外的tableaux形状。

著录项

  • 作者

    Tymoczko, Julianna;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号